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Abstract

People often receive feedback that depends on factors beyond their ability, yet lit-
tle is known about how this alters the scope for self-serving biases. In a theory-guided
experiment, individuals receive a noisy signal about their ability, which comes bundled
with another source of uncertainty – a teammate’s ability. In this environment individ-
uals can attribute the feedback across these two dimensions, updating in a self-serving
fashion, leveraging the additional flexibility from multi-dimensional uncertainty. In the
experiment, rather than blaming their teammate, they process information about them
in a positively biased way. This reduces costs associated with over-attribution towards
own performance, but later impedes learning by decreasing willingness to change team-
mates. These results suggest that individuals distort their perceptions of the environment
in order to arrive at self-serving beliefs.
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1 Introduction
Researchers have amassed a wealth of evidence suggesting that people hold self-serving beliefs,
regarding personal traits such as ability, beauty, or health (Benoît et al., 2015; Eil and Rao,
2011; Oster et al., 2013). The motives for holding these overly-rosy beliefs are typically thought
to relate to their hedonic, signalling, or motivational value (Bénabou and Tirole, 2002).1 Yet
the production and persistence of such inflated beliefs is not well understood, and is especially
puzzling considering that individuals often receive informative feedback about these traits,
suggesting some degree of reality denial in processing this information.2

Surely there must be consequences or limits to denying incoming information which con-
tradicts desired beliefs.3 Indeed, the literature has studied two mechanisms thought to be
responsible for mediating and limiting the production of excessively biased self-serving beliefs.
The first is that poorly calibrated individuals would make materially costly mistakes (Brunner-
meier and Parker, 2005), for example overconfident traders or entrepreneurs would lose money
(Barber and Odean, 2002; Camerer and Lovallo, 1999). In line with this, Zimmermann (2019)
finds that material consequences affect the scope for biased recall of negative feedback about
performance on an IQ test. The second is that it can be cognitively costly to internally justify
these deceptions, i.e. there are cognitive limits on how much individuals can deceive themselves
(Bénabou and Tirole, 2002; Bracha and Brown, 2012). For example, Engelmann et al. (2019)
find that self-deception about the likelihood of an impending electric shock decreases when the
evidence for this shock is presented in a less ambiguous way.

In this paper we find and discuss a new mechanism. In many facets of life, individuals
receive feedback or information that comes bundled with other fundamental (non-transitory)
sources of uncertainty, such as specific features of the decision environment or a coworker’s
ability. We highlight the critical role played by these fundamentals, by analyzing how they
affect the scope of the two cost mechanisms, and subsequently the production of self-serving
beliefs. We distinguish these multi-dimensional settings from the one-dimensional settings that
the empirical economics literature has mainly focused on so far, reviewed by Benjamin (2019).
In these typical studies on motivated information processing, subjects receive noisy (transitory)
feedback about an ego-relevant trait. This literature has been invaluable in gathering evidence
on whether self-serving biases alter how we process information. However we argue that the

1Specifically, benefits may arise from: (i) direct utility from holding overconfident beliefs for example arising
from self-esteem or ego-protection (Möbius et al., 2014; Brunnermeier and Parker, 2005), (ii) benefits to personal
motivation or self-signalling (Bénabou and Tirole, 2002, 2009, 2011), or (iii) strategic signalling motives and
persuasion of others (Burks et al., 2013; Schwardmann and van der Weele, 2019). These three explanations
have long been a part of the core motivation for attribution theory of social psychology, corresponding to (i)
self-enhancement/protection (ii) belief in effective control, and (iii) positive presentation of self to others; see
Kelley and Michela (1980) and Tetlock and Levi (1982).

2While we focus on biases in information processing, there is evidence for other self-serving strategies such
as avoiding negative information (e.g. for health (Oster et al., 2013); see Golman et al. (2017) for a broader
review), or biased recall (Zimmermann (2019)).

3Bénabou (2015) refers to this as reality denial, which is our focus in this paper. Beyond this, he discusses
two further supply side categories: willfull blindness and self-signalling. The former refers to strategic selection
or avoidance of information sources, while the latter refers to the possibility of “manufacturing signals” for
example through inference about past choices (Prelec and Bodner, 2003; Mijovic-Prelec and Prelec, 2010).
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one-dimensional case is likely to limit the scope for self-serving distortions, since it lacks the
added flexibility to arrive at desired beliefs that multiple dimensions offer. These constraints
on distorting beliefs in the one-dimensional case could in part explain why the literature which
studies ego-relevant belief updating has not found robust evidence for self-serving information
processing.4 Specifically, we study how different dimensions of uncertainty interact with the
two aforementioned cost mechanisms to offer additional flexibility in enabling self-serving belief
distortions.

The following example illustrates our theoretical and experimental setting. An individual
is placed in a team of two, and must choose an allocation between the two teammates, where
the optimal allocation weight is proportional to their respective abilities. She receives noisy
joint feedback about her own and the teammate’s ability. Assuming she would intrinsically
benefit from holding overconfident beliefs, the material costs of self-serving information pro-
cessing about her ability are that she will bias the allocation towards her own performance,
and subsequently end up with a worse outcome.

In accordance with the two cost mechanisms, a typical approach would be to model the
optimal level of biased information processing about own ability as trading off the presumed
benefits from overconfidence against the material costs, accounting for any cognitive costs
of engaging in distorted updating. However, our main insight is that the individual has an
additional tool to arrive at self-serving beliefs, which is to bias how she perceives information
about her teammate. As we will show, in our context, and more generally, this bias could go
in either direction.

On the one hand, following theories of self-serving attribution bias (Hastorf et al., 1970),
one might blame others for poor performance (and/or take credit for good performance).5 This
strategy will increase self-confidence, as it reduces one’s own responsibility for failure. On the
other hand, by engaging in positively biased information processing about their teammate’s
ability, individuals will end up with a more balanced weighting allocation, which reduces the
material costs of belief distortion, thus providing a means of hedging against overconfidence.

Our primary interest is in fact not to pin down the direction of the bias, but to study the
4This empirical literature is typically focused on asymmetry in updating: whether positive signals about

ability are over-weighted relative to negative signals. Different authors have found: Positive asymmetry (Eil
and Rao, 2011; Möbius et al., 2014), no asymmetry (Grossman and Owens, 2012; Buser et al., 2018), and
negative asymmetry (Coutts, 2019a; Ertac, 2011) have all been observed. Buser et al. (2018) do find positive
asymmetry in some sub-samples. Reactions to feedback have also been studied in less comparable or non ego-
relevant settings, see Barron (2020), Burks et al. (2013), Charness and Dave (2017), Eberlein et al. (2011),
Erkal et al. (2019), Gotthard-Real (2017), Pulford and Colman (1997), Ertac and Szentes (2011), and Wozniak
et al. (2014).

5If it were “easier” to blame others, this could be modeled as a lower cognitive cost of distorting information
about others; see our concluding discussion. The study of self-serving attribution biases within psychology
has naturally focused on environments with multi-dimensional uncertainty. That people attribute outcomes to
more salient sources such as other individuals was noted by Heider (1944, 1958) and later studied by Pryor and
Kriss (1977); Lassiter et al. (2002). This type of attribution has clear parallels to availability bias of Tversky
and Kahneman (1973). While the overall evidence suggests significant evidence in favor of the existence of
self-serving attribution biases (Mezulis et al., 2004), the resulting studies of attribution were focused on general
principles rather than tractable models, discussed in Kelley (1973) and Weiner (2010). Moreover, the study of
self-serving biases in psychology is generally framed as one of trade-offs for how to manage blame in order to
maintain desirable beliefs (Campbell and Sedikides, 1999).
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mechanics of this distortion more generally. Regardless of its direction, our theoretical insight
is that in environments with multiple dimensions of uncertainty, individuals subconsciously use
this tool of distortion to arrive at higher levels of overconfidence than individuals who do not
manipulate their beliefs about the external fundamental (teammate’s ability). To help develop
this intuition, our theoretical contribution is to present a micro-founded quasi-Bayesian model
of self-serving information processing with two dimensions of uncertainty. In the model, for
a given signal, individuals distort the likelihood of being in a particular state (i.e. scoring in
the top half) for either of these two dimensions. In other words, they may mis-perceive how
indicative a signal is of their own high performance, and additionally, may mis-perceive the
analogous likelihood for a teammate’s performance.

In the Main treatment of our experiment, a two-person team’s output depends on the ability
of both members, measured through an IQ-style test, where one of the team members is the
subject themselves. To properly assess whether information processing exhibits self-serving
biases, an otherwise identical Control treatment removes ego-relevance, by matching a subject
with another two-person team. Individual payoffs depend on the team output as well as on the
decision weight that an individual places on own (Control: teammate 1’s) ability relative to
the other teammate’s ability. Individuals receive noisy aggregate feedback, and can attribute
the feedback to both their own (Control: teammate 1’s) and the other teammate’s ability.
The updating problem is then one of joint inference; however the feedback from these two
sources cannot be disentangled. Feedback is materially relevant, as the weight must be chosen
immediately after it is received.

Our first result is that relative to the Control (and relative to a Bayesian benchmark),
individuals in our Main treatment engage in significant self-deception in the face of feedback.
Using a structural analysis we find a high degree of self-serving bias in updating about own
performance: individuals significantly under-weight negative compared to positive feedback
when updating beliefs. These effects are confirmed in a non-parametric matching strategy
which conditions on initial priors. After receiving four rounds of feedback, individuals in our
Main treatment end up 8.5 percentage points more confident about their performance than
comparable individuals in Control. By matching on the ratio of positive to negative signals
received, the result is strongest for those receiving a greater proportion of negative signals.

Our second result is that information processing is also significantly positively biased about
teammate performance in the Main treatment. Using the same strategy which matches on initial
prior beliefs, after receiving feedback, individuals end up 5.2 percentage points more optimistic
about their teammate’s performance in the Main treatment, relative to what individuals in the
Control treatment believe about their teammates. Similar to updating about own performance,
our structural estimations show these updating patterns are driven by under-weighting of neg-
ative feedback. This suggests that in the process of nurturing self-serving beliefs, individuals
engage in distorted information processing about other uncertain qualities such as the ability
of their teammate.

While this presents, to our knowledge, some of the first empirical evidence in economics on
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self-serving attribution biases with two-dimensional uncertainty, existing theoretical work has
studied similar types of environments.6 Bénabou and Tirole (2009) study a context where indi-
viduals benefiting from anticipatory feelings may engage in biased recall over their contribution
to output generated by a two-person partnership, where individuals can perfectly recall their
prior actions, but not information about about what type of person they are. Although able to
generate self-serving beliefs, the mechanism is different from our setting, which centers on the
immediate biased interpretation of feedback.7 Our focus on biased information processing also
distinguishes our model and results from recent work by Heidhues et al. (2018) and Hestermann
and Le Yaouanq (2020), who examine the long run consequences of initial biases in confidence
in environments with two dimensions of uncertainty with Bayesian information processing.8

While the long run is not our focus, crucially our results do point to a broader set of
implications. A first order effect is that individuals who end up biased about other states of
the world will subsequently make sub-optimal decisions. In a superficial sense, this relates to
the finding of Heidhues et al. (2018), who show that overconfident individuals will subsequently
make poor decisions, leading to a cycle of self-defeating learning and worse outcomes, which
the individuals increasingly attribute to an external fundamental (e.g. a teammate). Yet the
dynamics in our setting are very different, as we shut down the link between weighting decisions
and feedback, which precludes this type of self-defeating learning. In our experiment, these sub-
optimal outcomes can only occur through the channel of biased inference, not through the link
between weighting decisions and outcomes. Importantly, we do find evidence that the biased
information processing about teammates in our experiment leads to subsequent worse decision
making. Specifically, when given a surprise opportunity to change teammates, individuals in
our Main treatment are 34% less likely to be willing to pay to change teammates than their
Control counterparts, who switch at optimal levels on average.

Beyond this, there are prominent second order effects. Individuals who are less likely to
change environments will face fewer opportunities to learn about their true ability. This damp-
ens learning, and as a result can exacerbate overconfidence even further. Importantly this
goes contrary to the long run predictions of Bayesian inference as shown by Hestermann and
Le Yaouanq (2020), who study the consequences of initial mis-calibration in confidence in a
world where individuals are matched with some fundamental but can change their environment,
i.e. match with a new fundamental at some cost. They show that only underconfidence will

6We are only aware of one other empirical study, the contemporaneous work of Goette and Kozakiewicz
(2020), who conduct an experiment to test a model of self-defeating learning (Heidhues et al., 2018). Different
from our paper, their main focus is to examine the link between actions and feedback, a channel which we
intentionally shutdown. Beyond this, our focus on the mechanics of information processing distinguishes our
work from their approach which focuses on the aggregate evolution of beliefs.

7While imperfect recall may be realistic in some settings, we focus on the short-term; hence our experiment
was constructed to rule out opportunities to bias memory. The extent to which actions are biased to maintain
self-serving beliefs is an interesting question (Bénabou and Tirole, 2011), however, we take the stance that
absent these longer-run considerations, the direction of influence runs from beliefs to actions.

8As their primary focus, Heidhues et al. (2018) focus on an extreme form of overconfidence, where individuals
believe with certainty that their ability is higher than it really is, and use Bayes’ rule to update their beliefs.
They do relax this assumption to show how a particular form of biased updating does not change the core
predictions of their theory. In this extended framework individuals receive continuous signals about ability
which are biased upwards by a fixed amount. In contrast, our setting allows for more flexible belief distortion.
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persist in the long run, as initially overconfident individuals will be unsatisfied with outcomes
and subsequently more likely to change environments. Importantly, our results show the exact
opposite – that overconfidence could persist for similar reasons. This is consistent with real
world evidence, which has found overconfidence to be more prevalent than underconfidence
(Dunning, 2005).

The rest of the paper proceeds as follows. In the next section, we outline our experimental
context and design. This is followed by our model, which focuses on self-serving attributions
with an additional source of uncertainty. Subsequently we describe our predictions, followed
by results, and conclude with a discussion.

2 Experimental Design

2.1 Overview

The experiment was conducted at the WiSo experimental laboratory at the University of Ham-
burg. All decisions were computerized, using z-tree (Fischbacher, 2007). A total of 426 student
subjects (52% of them female) participated in 17 sessions, across two waves in the 2017-18 aca-
demic year; 192 subjects participated in wave 1, 234 subject in wave 2. Experimental sessions
in the first wave lasted approximately 1 hour, in which subjects received an average payment
of e14. The second wave was for the most part identical to the first but had a slight difference
in the belief elicitation, and comprised an additional experimental part in which individuals
could switch teammates. Experimental sessions in wave 2 lasted approximately 1.5 hours in
which subjects earned on average e19.9 Table 1 summarizes the structure of the experiment,
full experimental instructions are presented in the Online Appendix Section 9.

We now describe the components of the experiment in the framework of the Main treatment.
Afterwards we present the design features in which the Control treatment differs from the Main
treatment. At the beginning of the experiment we provided subjects with the instructions for
Part 1 and announced that they would receive the instructions for the other parts as the
experiment progressed. In Part 1 subjects had 10 minutes to complete a trivia and logic test
consisting of 15 questions. A timer in the upper right corner of the screen continuously informed
subjects how much time was remaining on the test. The instructions stated: “Questions similar
to these are often used to measure a person’s general intelligence (IQ). Your task is to answer as
many of these questions correctly as possible.” Our priority was to emphasize the importance
of the test to subjects, so that they would care about their ranking. Our intention was not
to actually measure their IQ. In order to examine hard-easy effects in information processing,
subjects were assigned to one of two versions of the test, one harder and one easier, randomized
at the session level.10 Subjects were unaware of these differences and were incentivized the same

9Earnings included a e5 show-up fee. In one session of wave 2 a fire alarm went off at the end, invalidating
only data for Part 3. Due to a small glitch, some subjects inadvertently skipped entering beliefs, which leaves
us with 3155 out of 3170 observations.

10See Larrick et al. (2007) and Moore and Small (2007) on the hard-easy effect. This effect stipulates that
individuals will be more upwardly biased in estimating relative performance on easy rather than hard tasks.
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Table 1: Experimental Flow

Part 1
• IQ task (10 minutes) with monetary incentives

Part 2
• Teammate 1 is matched at random to a teammate 2
• Observe # of attempted questions for teammate 2

• Report prior beliefs about teammate 1 and teammate 2
• Submit first weight

Repeated × 4 times:
• Receive feedback
• Report posterior beliefs about teammate 1 and teammate 2
• Submit the weight

Part 3:
Wave 2 only • Willingness to pay to switch teammate 2

• BDM style lottery determines whether teammate 2 is
switched or not

• Observe # of attempted questions for (new) teammate 2

• Report beliefs about teammate 1 and teammate 2
• Submit the weight

Repeated × 4 times:
• Receive feedback
• Report posterior beliefs about teammate 1 and teammate 2
• Submit the weight

way in both versions: each correct answer would earn 2.5 points while an incorrect answer would
be penalized by 1 point. Unanswered questions did not affect the final score. These incentives
ensured that subjects attempted a question only if they were relatively sure that they knew
the answer such that the attempted number of questions (which we use in later parts of the
experiment) would carry some informational value.11 Subjects could not score below zero and
were paid e0.10 per point earned in Part 1 at the very end of the experiment. At this stage no
feedback on performance was given.

At the beginning of Part 2, subjects were paired into teams of two that remained constant
throughout this part. Subjects’ individual performances on the test from Part 1 jointly defined
their “team performance” in Part 2. We neither provided subjects with any information about
their teammates’ identity nor about their teammates’ actual test scores. Subjects only received
information on the number of questions that their teammate attempted on the test. This figure

11If women are more risk averse this could lead to gender differences in the number of attempted questions,
see Baldiga (2014). We do not find evidence for this in our experiment.
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provided some limited information about the teammate’s performance, generating variation in
initial prior beliefs.

We designed the team formation protocol such that both teammates’ test scores were com-
pared to the same randomly selected group of 19 other test scores from the experimental session.
Each subject could either score in the top 10 (top half) or the bottom 10 (bottom half) of this
comparison group of 20, with ties broken randomly. Our main measure of interest is the degree
to which subjects believe that they and their teammate score in the top half of performances.
Subjects neither learned their absolute score nor whether they themselves or their teammate
belonged to the top or bottom half until the end of the experiment. Not comparing teammates’
scores to each other, but to the same comparison group, ensured that the teammates’ individual
rankings were independent of the other’s score.

It was also critical for us to conduct a fully powered comparison group as a control. To this
end, randomized across sessions, we varied whether subjects themselves were members of the
team and hence were reporting beliefs about themselves and their teammate or whether they
play the role of a third party who must report beliefs for a team composed of two different
individuals. That is, in the Main treatment (226 subjects) subjects’ beliefs and subsequent
earnings depended on subjects’ own performance, while in the Control treatment (200 subjects)
own test performance was not relevant.

In Control, at the beginning of Part 2 each subject was assigned to a team consisting of
two randomly selected other subjects (the teammates) from the same session. Subjects in
Control were shown the screenshot of the submitted answers to the IQ quiz of one of the
teammates (teammate 1) and were provided with information about the number of attempted
questions of the other teammate (teammate 2). In this way, we ensured that the subjects in
the Control treatment had identical information about all decision-relevant variables as the
subjects in the Main treatment. As a result, by comparing reported beliefs across the Main
and Control treatments, we are able to isolate biases driven by reasons of ego-protection and
to abstract from other sources of belief updating biases. In the following we will consistently
denote beliefs reported about own performance (in Main) and teammate 1’s performance (in
Control) as performance beliefs about teammate 1 and similarly, denote beliefs reported about
the teammate’s performance (Main) and teammate 2’s performance (Control) as performance
beliefs about teammate 2.

2.2 Weighting Decision and Belief Elicitation

Subjects were informed that their earnings from Part 2 would depend on their team’s perfor-
mance which was determined by the teammates’ relative rankings in Part 1 as well as by a
weighting decision that they would take during Part 2. We emphasized in the instructions that
the weighting decision depended on subjects’ reported beliefs and only affected subjects’ own
earnings. This ensured that social preferences played no role in their decisions.

The weighting decision and its direct relationship with earnings provided subjects with a
transparent monetary incentive to truthfully report their beliefs about the probabilities of the
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two teammates scoring in the top half of performances on the IQ task. Based on subjects’
reported beliefs, the computer then calculated the optimal weight and recommended how much
to weight one teammate’s performance relative to the other teammate’s performance, using
graphical tools and an explanation of which weight would give them the highest expected
payoffs (see Figure 1).

Assuming subjects can form subjective beliefs, as long as they strictly prefer a higher proba-
bility of earning e10, it is in their best interest to truthfully report those beliefs. This procedure
is thus novel in its indirect implementation, but shares the same incentive compatibility prop-
erties of other elicitation procedures such as matching probabilities (Holt and Smith, 2009;
Karni, 2009), or the binarized scoring rule (Hossain and Okui, 2013). Like these other meth-
ods, our procedure does not require the assumption of risk-neutrality, and only requires minimal
assumptions of probabilistic sophistication, see Machina (1982).12

Subjects were given complete information about the structure of expected payoffs. If both
of the teammates were ranked in the top half of the comparison group (unknown to subjects at
this point of the experiment), the subject would earn an amount of e10 for sure. Analogously,
if both of the teammates were ranked in the bottom half, the subject would earn an amount
of e0 for sure. If, however, one teammate was ranked in the top and the other was ranked in
the bottom half, a subject’s probability of earning e10 would depend on his or her weighting
decision ωt ∈ [0, 1]. Specifically, the probability of earning e10 was given by √

ωt if teammate 1
scored in the top half and teammate 2 in the bottom half and

√
1− ωt if teammate 1 scored in

the bottom half and teammate 2 in the top half.
For each elicitation, subjects entered beliefs for the probability that teammate 1 scored

in the top half, and the probability that teammate 2 scored in the top half. Calculating the
optimal weight requires knowledge of the probabilities of the two payoff relevant states: whether
teammate 1 is top and teammate 2 is bottom, and vice-versa, see Section 3.2.

In wave 1 we assumed independence between beliefs about performance of the teammates, in
order to calculate the probabilities of these states. In wave 2 beliefs were additionally elicited
about the probabilities of all four possible states: both top, both bottom, and teammate 1
top and teammate 2 bottom (and vice-versa). Subjects had full freedom to re-allocate these
probabilities to the four relevant states as they saw fit. Screenshots of the procedure can be
seen in Figure 1 (and in Online Appendix Section 9 for wave 1). Reassuringly, 90% of the time
subjects chose not to alter beliefs in the four states, that is, they followed the independence
assumption.13 Strictly speaking, when faced with the 2 × 2 set which corresponds to each

12If subjects choose to enter different weights from those suggested, we are no longer able to claim incentive
compatibility. Reassuringly, only 7% of weights did not correspond to the suggested optimal. Results are not
affected excluding these observations. Note that theoretically there are different combinations of beliefs (in par-
ticular, sharing the same ratio) that lead to the same optimal weight. It is thus possible that subjects can arrive
at the optimal weight, but intentionally report different combinations of beliefs to deceive the experimenter.
We do not find this likely.

13Independence fails to hold after feedback, which creates dependencies between beliefs about performance of
the two teammates. For the 10% that reported beliefs that were inconsistent with the independence assumption,
the average difference in the belief reported was less than one percentage point. Results are robust to excluding
these observations. Piloting suggested it was not intuitive for subjects to initially think about the probabilities
of these four states. For this reason we first asked about the probability of teammate 1 and 2 being in the top
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teammate being either in the top or bottom half, our elicitation procedure is only incentive
compatible for the two payoff relevant states (in which only one of the two teammates ranked
in the top half and the other in the bottom half). However, given that the vast majority of
subjects do not alter beliefs in the four states, it suggests that subjects were not strategically
mis-representing beliefs in the other two states. Finally, in Online Appendix Section 1 we show
beliefs are nearly identical across the two waves, which additionally suggests that subjects did
not alter their behavior in response to these theoretical subtleties. This is sensible, as they are
hard to perceive, but beyond this, they do not generate any additional strategic motivation to
not tell the truth.

Figure 1: Screenshot of the mapping from chosen weight to probability of winning e10 which was calculated
for every subject, conditional on the beliefs they entered.

2.3 Feedback

Once their weight was submitted, subjects received feedback in the form of binary signals
from a “Team Evaluator”, represented as a cartoon figure. Positive or negative team feedback

half.
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corresponded in the experiment to the Team Evaluator giving a “Green Check” or “Red X”
respectively. If both teammates scored in the top half, the Team Evaluator gave a Green Check
with 90% probability and a Red X with 10% probability. If one teammate scored in the top
half and the other scored in the bottom half, then the Team Evaluator gave a Green Check or
a Red X with 50% probability. If both teammates scored in the bottom half, then the Team
Evaluator would give the Red X with 90% probability and a Green Check with 10% probability.

Note that the feedback received from the Team Evaluator was (i) independent across feed-
back rounds, (ii) related to the actual performance of the teammates in Part 1 of the experiment,
and (iii) depended neither on the beliefs reported by subjects nor on the previous weights sub-
mitted. This ensured that subjects did not have incentives to “experiment” with their chosen
beliefs and weights to learn more about their rankings.

After receiving the Team Evaluator’s feedback, subjects entered the next elicitation stage
where they had to again report their beliefs that the teammates scored in the top half. Subse-
quently, the computer gave them a new weight recommendation which they could review and
submit. This process was repeated four times. In total, subjects reported their beliefs about
the teammates’ performances and submitted a weight five times and received feedback from a
Team Evaluator four times.

At the beginning of the Part 2, subjects were told that one of the five weighting decisions
they were going to take would be selected at random and the probability of winning the e10
would depend on the selected weighting decision as well as on the teammates’ performances as
explained above.14 Before the start of Part 2, subjects had to answer five control questions that
were aimed at ensuring their understanding of the payment calculation, the Team Evaluator’s
feedback, and the weighting function. Subjects were only allowed to start Part 2 of the experi-
ment and enter their first belief when the experimenter had checked that the answers provided
were correct.

2.4 Part 3

In wave 2, at the end of Part 2, we presented subjects with a surprise opportunity to switch
teammates. Specifically, we asked for their maximum willingness to pay (WTP) to be randomly
re-matched with a new teammate 2 for Part 3. Our interest in WTP stems from understanding
the consequences of biases in attribution for decisions to change one’s environment.

Part 3 otherwise was identical to Part 2. We elicited WTP using the BDM mechanism
of Becker et al. (1964). The mechanism asked subjects to enter any amount between e0 and
e5 as their maximum willingness to pay to switch their teammate. The lottery would then
choose a random price in the [e0, e5] interval and subjects would switch their teammate if
their maximum WTP was above the chosen price and keep their teammate if this maximum
WTP is below that price. Our focus is on differences in WTP across Main and Control.

14For more discussion on incentive compatibility of paying for one randomly selected decision in experiments
see Azrieli et al. (2018). Note that in wave 2 there is an additional paid Part 3, however subjects are not aware
of its structure until completing Part 2.
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3 Model

3.1 Preliminaries

We first setup the theoretical framework which follows from the experimental design. An indi-
vidual faces an environment with two sources of uncertainty: (i) the ability of teammate 1 (own
ability in Main) and (ii) the ability of teammate 2. Following the experiment, our interests are
in the discrete 2×2 state space of the ability of both teammates. Teammate 1’s unknown ability
is given by A1 ∈ {B, T}, corresponding to either low ability (bottom half of the performance
distribution) or high ability (top half). The unknown fundamental of interest A2 ∈ {B, T} is
defined analogously. In the experiment this will correspond to whether teammate 2 is in the
bottom half or top half of performances respectively. This leads to the four relevant states:

A1A2 =



TT if A1 = T and A2 = T

TB if A1 = T and A2 = B

BT if A1 = B and A2 = T

BB if A1 = B and A2 = B

At time t, the individual holds beliefs about the probability that the ability of teammate 1
and teammate 2 are T , given by b1t and b2t respectively. As in the experiment, at each time period
t, individuals take an action, by choosing how much to weight the performance of teammate 1
relative to teammate 2, ωt. Monetary payoffs at time t, are awarded probabilistically, with the
possibility of earning a payment P > 0 or nothing. The individual will optimize by considering
the payoffs of each period, which are determined according to the lottery (P, 0;

√
ωt) that pays

P with probability √
ωt and 0 otherwise.

Πt(ωt, A1, A2) =



P if TT

(P, 0;
√
ωt) if TB

(P, 0;
√
1− ωt) if BT

0 if BB

(1)

3.2 Optimal weight

We assume that individuals are subjective expected utility maximizers, with strictly increasing
utility function u(·). Individuals form subjective beliefs about the probabilities that teammate 1
and 2 are in the top half. Section 3.4 will describe the subconscious process underlying the
formation of beliefs, however for now we take them as given. Denote beliefs about the four
states at time t by bA1A2

t . Thus, individuals have beliefs b1t = bTT
t + bTB

t and b2t = bTT
t + bBT

t ,
respectively about the probability that A1 = T and A2 = T at time t.

The optimization problem of individuals is to maximize expected utility:

11



bTT
t · u(P )

+bTB
t ·

√
ωt · u(P ) + bTB

t · (1−
√
ωt) · u(0)

+bBT
t ·

√
1− ωt · u(P ) + bBT

t · (1−
√
1− ωt) · u(0)

+bBB
t · u(0) (2)

Taking first order conditions and setting the resulting equation equal to 0 yields:

bTB
t · 1

2
√
ωt

· [u(P )− u(0)] = bBT
t · 1

2
√
1− ωt

· [u(P )− u(0)] (3)

This leads to the optimal weight,

ω∗
t =

1

1 +
(

bBT
t

bTB
t

)2 . (4)

Note that the optimal weight does not depend on the curvature of the utility function, u(·),
and hence is independent of risk preferences. Unless there is certainty, extreme weights are never
optimal. Intuitively, the optimal weight ω∗

t is increasing in bTB
t , the belief that teammate 1 is

in the top half and teammate 2 is in the bottom half, and is decreasing in bBT
t , the belief that

teammate 2 is in the top half and teammate 1 is in the bottom half.
Two observations are worth noting. First, given the functional form of expected utility, the

optimum in Equation 4 is guaranteed to exist, and there is a unique solution for any beliefs
except for the extreme case when bTB

t = bBT
t = 0.15 Second, the optimal weight depends in

opposite directions on the expected ability of teammate 1 and the expected ability of team-
mate 2. Thus, biases in beliefs regarding teammate 1 and 2 will be most costly when they are
in opposing directions, for example, an upward bias for teammate 1 and a downward bias for
teammate 2.16

3.3 Belief Updating

We first examine the Bayesian benchmark to study how beliefs evolve for the four states, and
hence how beliefs about being in the top half evolve. Following the experiment, signals are

15Note that when bTB
t = 0 and bBT

t > 0, the unique optimal weight is ω∗
t = 0. In the extreme case where

both bTB
t = 0 and bBT

t = 0, payoffs are identical for every possible weight. Hence any weight is optimal. By
the laws of probability bTB

t + bBT
t ≤ 1.

16In period 0, this functional form generates the same self-defeating learning condition discussed in Heidhues
et al. (2018). In our setup, the feedback that our individuals receive is independent of their weighting decisions,
which precludes the type of self-defeating learning which they study. Heidhues et al. (2018) have a continuous
state space for ability, while ours is binary. Thus, to be certain about ability and overconfident in our setting
reduces to b10 = 1. To see the result on self-defeating learning, note that one can rewrite Equation 4 in terms of
priors about the ability of teammate 1 b10 and teammate 2 b20. Then one can see that expected utility is increasing
in expected ability of teammate 1 and 2, b10 and b20 respectively, and the optimal weight ω* is decreasing in the
expected ability of teammate 2 b20 and increasing in expected ability of teammate 1 b10.

12



independent across time t and not perfectly informative about the states of the world (i.e.
noisy). They are positive (p) with probability ΦA1A2 < 1, otherwise they are negative (n). We
denote them by st = (p, n; ΦA1A2). From now on we also make explicit the assumption that
1 > ΦTT > ΦTB = ΦBT > ΦBB = 1−ΦTT > 0, in our experiment specifically ΦTT = 0.9,ΦTB =

ΦBT = 0.5,ΦBB = 0.1.
A Bayesian will update beliefs about teammate 1 being in the top half given either positive

(p) or negative (n) signals respectively as follows:17

[
b1,BAY ES
t+1 |st = p

]
=

ΦTT b
TT
t + ΦTBb

TB
t

ΦTT bTT
t + ΦTBbTB

t + ΦBT bBT
t + ΦBBbBB

t

(5)

[
b1,BAY ES
t+1 |st = n

]
=

(1− ΦTT )b
TT
t + (1− ΦTB)b

TB
t

(1− ΦTT )b
TT
t + (1− ΦTB)bTB

t + (1− ΦBT )bBT
t + (1− ΦBB)bBB

t

.

Analogously for teammate 2:

[
b2,BAY ES
t+1 |st = p

]
=

ΦTT b
TT
t + ΦBT b

BT
t

ΦTT bTT
t + ΦTBbTB

t + ΦBT bBT
t + ΦBBbBB

t

(6)

[
b2,BAY ES
t+1 |st = n

]
=

(1− ΦTT )b
TT
t + (1− ΦBT )b

BT
t

(1− ΦTT )b
TT
t + (1− ΦTB)bTB

t + (1− ΦBT )bBT
t + (1− ΦBB)bBB

t

.

3.4 Self-Serving Attribution Bias

In this section we present an updating framework which maintains the structure of Bayes’ rule
but allows for strategic mis-attribution of feedback across different sources. In our model, mis-
attribution will correspond directly to mis-perceiving the likelihood of observing a given signal.
That is, a positively biased attribution towards own performance will correspond to interpreting
a signal (positive or negative) as being more indicative of high performance, compared to what
the objective likelihood would suggest. In the Control treatment, since ego-utility is not at
stake, we propose that there is no mis-attribution for teammate 1 and teammate 2, i.e. updating
follows Bayes’ rule.

In the following we focus on the case where the subject herself is teammate 1, corresponding
to the Main treatment of the experiment. Thus, the driver of biased information processing
comes from the benefits that individuals receive from inflating beliefs about their ability. We
are agnostic over the precise source of these benefits, among the possibilities outlined in the
introduction.

Following the literature, we assume that belief distortion is costly for two reasons: first,
the material consequences which result from subsequent worse decision making, and second,
the presence of direct mental costs of distorting beliefs. As is typical in these models, see
also Brunnermeier and Parker (2005), we assume that these trade-offs occur at a subconscious
level. If individuals were fully aware of their overconfidence, this would leave little scope for

17To derive this equation note (taking the case of a positive signal) that the probability of st = p conditional
on teammate 1 being in the top half is ΦTT bTT

t +ΦTBbTB
t

b1t
. The probability of being in the top half is, b1t , and the

perceived probability of receiving a signal st = p is ΦTT b
TT
t +ΦTBb

TB
t +ΦBT b

BT
t +ΦBBb

BB
t .
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the benefits of holding these biased beliefs in the first place. In this section we present a
model of modified Bayesian updating which is not constrained to a biased interpretation of one
dimension of uncertainty, but allows for flexible attribution across these different sources to
arrive at optimal self-serving beliefs. The model’s foundations are derived in Appendix A.

In our context, feedback depends on two dimensions of uncertainty: (1) own performance;
and (2) performance of teammate 2 (the external fundamental). The model generates the clear
prediction that attributions towards own performance will be positively biased, due to the
assumed benefits of overconfidence. However, the model allows for either positive or negative
attributions regarding the performance of teammate 2. The intuition for this result is that
negative attributions towards one’s teammate do increase self-serving beliefs (excess blame on
the teammate reduces one’s own responsibility by construction), a benefit, but also increase
the financial costs, through more biased weighting choices.18

In the model, to arrive at self-serving beliefs we allow individuals to engage in distorted
attributions when updating about their own performance or their teammate’s performance.
Starting from the Bayesian updating framework, we relax the model to include distortion
parameters about own ability γ1

s , and teammate ability γ2
s (γi

s ∈ R+, i = 1, 2), where s ∈ {p, n}
represents positive or negative signals. With regards to own performance, we assume the
model of updating with self-serving attribution bias (AB) takes the following functional form
for positive and negative signals respectively.

[
b1,AB
t+1 |st = p

]
=

γ1
pγ

2
pΦTT b

TT
t + γ1

pΦTBb
TB
t

γ1
pγ

2
pΦTT bTT

t + γ1
pΦTBbTB

t + γ2
pΦBT bBT

t + ΦBBbBB
t

(7)

[
b1,AB
t+1 |st = n

]
=

γ1
nγ

2
n(1− ΦTT )b

TT
t + γ1

n(1− ΦTB)b
TB
t

γ1
nγ

2
n(1− ΦTT )bTT

t + γ1
n(1− ΦTB)bTB

t + γ2
n(1− ΦBT )bBT

t + (1− ΦBB)bBB
t

Regarding updating about the teammate:

[
b2,AB
t+1 |st = p

]
=

γ1
pγ

2
pΦTT b

TT
t + γ2

pΦBT b
BT
t

γ1
pγ

2
pΦTT bTT

t + γ1
pΦTBbTB

t + γ2
pΦBT bBT

t + ΦBBbBB
t

(8)

[
b2,AB
t+1 |st = n

]
=

γ1
nγ

2
n(1− ΦTT )b

TT
t + γ2

n(1− ΦBT )b
BT
t

γ1
nγ

2
n(1− ΦTT )bTT

t + γ1
n(1− ΦTB)bTB

t + γ2
n(1− ΦBT )bBT

t + (1− ΦBB)bBB
t

These parameters have relatively straightforward interpretations. First, when γ1
s = γ2

s = 1,
updating reduces to Bayesian. The larger γ1

s is, the greater are the positive attributions that
the individual makes towards themselves, with an analogous relationship holding between γ2

s

and the teammate. For example, a larger value of γ1
s increases the perceived likelihood that

18Our core model assumes that the mental costs of mis-attributions across the two sources are identical and
independent. In our concluding discussion we argue how relaxing this assumption affects individuals’ belief
distortions about own and teammate’s abilities.
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the states TT and TB generated a signal s, the states of the world where own performance is
in the top-half. Similarly, greater values of γ2

s increase the perceived likelihood that the states
TT and BT generated a signal s. Our specification of the bias is thus reminiscent of the biased
updating model of Gervais and Odean (2001).

Posterior beliefs, b1,AB
t+1 , are increasing in γ1

s , but decreasing in γ2
s ; consequently self-serving

bias implies that γ1
s ≥ 1, see Appendix A. Regarding teammate 2, biased attributions necessarily

do not exceed attributions about own performance, i.e. γ2
s ≤ γ1

s . However, γ2
s may be greater

than, equal to, or less than one. On the one hand, as noted, posterior beliefs are greater for
lower values of γ2

s , hence we might expect the optimal γ2
s < 1. This is compatible with the

psychology literature which suggests that one might expect that teammate 2 is a likely target of
negative mis-attribution, i.e. blaming teammate 2 which leads to more pessimistic beliefs about
their performance. On the other hand, a positive mis-attribution towards the teammate can
mitigate the financial consequences of self-serving attributions in our experiment. The reason
is that the optimal weight in the experiment becomes distorted, as derived in Appendix A:

ω̂∗
t+1 =

1

1 +
(

γ2
s b

BT
t

γ1
s b

TB
t

)2 . (9)

One can see that whenever γ1
s ̸= γ2

s there is a distortion in the chosen weight relative
to the Bayesian optimum. Thus while negative attributions towards teammate 2 (γ2

s < 1) do
increase self-serving beliefs, this is ultimately costly in terms of financial penalties for submitting
distorted weighting decisions.

The optimal γ1
s ≥ 1 and γ2

s ≤ γ1
s are such that

[
b1,AB
t+1 |st = s

]
≥

[
b1,BAY ES
t+1 |st = s

]
, i.e.

posteriors about own performance are biased upwards. However, whether the biased posterior
for teammate 2,

[
b2,AB
t+1 |st = s

]
, is smaller, equal, or larger than the Bayesian

[
b2,BAY ES
t+1 |st = s

]
depends on the value of γ2

s .19 Regardless of the direction, a key implication of the framework
is that future decisions involving the external fundamental will result in additional negative
penalties on optimal decision making.

Finally we note that we can examine the nested case of the model, where distortions only
occur over one dimension of uncertainty, relating to own performance, as is the case for the
papers cited in the introduction and discussed in Benjamin (2019). In this special case, γ2

s = 1.
Because this is a restricted case, self-serving beliefs will be necessarily lower. The specific
patterns of self-serving attribution bias are an empirical question, which we turn to next.

4 Hypotheses
In our theoretical model we assume that belief updating follows Bayes’ rule in the Control
treatment (Section 4). However, in order to allow for more flexibility and due to expected
deviations from Bayes’ rule, see Benjamin (2019), all of our hypotheses make comparisons

19If γ2
s ≤ 1, then in our setting

[
b2,AB
t+1 |st = s

]
≤

[
b2,BAY ES
t+1 |st = s

]
, see Appendix A.
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between the Main and Control treatments of the experiment. Only when relevant, we will refer
to the Bayesian benchmark.

4.1 Belief Formation

While our main focus is on updating beliefs we also discuss belief formation and present hy-
potheses relating to overconfidence biases, which serve as a litmus test for whether subjects
find the IQ task ego-relevant.

Our first hypothesis of interest concerns whether there is overconfidence in the Main treat-
ment for teammate 1, relative to the control treatment benchmark. We test the following
competing hypotheses, comparing initial beliefs across the two treatments. Let b1,M0 be the
average initial (t = 0) belief about one’s own probability of scoring in the top half, where the
superscript M stands for Main treatment and 1 indicates that it is teammate 1. Similarly, b1,C0

refers to the initial belief for teammate 1 in the Control treatment, regarding a third party.

Hypothesis 1:

Initial beliefs are the same across Main and Control treatments.
(b1,M0 = b1,C0 )

Hypothesis 1*:

Initial beliefs are larger in the Main than in the Control treatment.
(b1,M0 > b1,C0 )

4.2 Belief Updating

Here we examine the implications of the model for the empirical framework, which follows
Grether (1980) and Möbius et al. (2014); see Benjamin (2019) for additional references. Bayes’
rule can be written in the following form, considering binary signals, st, for positive and negative
signals respectively:

bit+1

1− bit+1

=
bit

1− bit
· LRi

t(s) (10)

where LRi
t(s) is the Bayesian likelihood ratio of observing signal st = s ∈ {p, n} when updating

beliefs about teammate i. For the sake of clarity, we take the perspective of updating beliefs
about teammate 1; results for teammate 2 are derived similarly. From the model which includes
potential attribution biases, the perceived likelihood of observing a positive signal conditional
on teammate 1 being in the top half is:

γ1
pγ

2
p0.9b

TT
t + γ1

p0.5b
TB
t

bTT
t + bTB

t

,
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where γ1
p = γ2

p = 1 indicates the likelihood a Bayesian perceives. The perceived likelihood of
observing a positive signal conditional on teammate 1 being in the bottom half is:

γ2
p0.5b

BT
t + 0.1bBB

t

bBT
t + bBB

t

Recalling that b1t = bTT
t + bTB

t , the perceived likelihood ratio, ˆLR1
t (p), is thus:

ˆLR1
t (p) =

γ1
pγ

2
p0.9b

TT
t + γ1

p0.5b
TB
t

γ2
p0.5b

BT
t + 0.1bBB

t

· 1− b1t
b1t

≥ 1

Similarly, the perceived likelihood ratio, ˆLR1
t (n), is:20

ˆLR1
t (n) =

γ1
nγ

2
n0.1b

TT
t + γ1

n0.5b
TB
t

γ2
n0.5b

BT
t + 0.9bBB

t

· 1− b1t
b1t

≤ 1

Note that the Bayesian likelihood ratios, LRi
t(s) are calculated by setting γi

s = 1.
Inserting the perceived likelihood ratio in Equation 10, taking natural logarithms of both

sides, and adding an indicator function I{st = s} for the type of signal observed,

logit(bit+1) = logit(bit) + I{st = p} ln
(

ˆLRi
t(p)

)
+ I{st = n} ln

(
ˆLRi

t(n)
)
. (11)

The empirical model nests this Bayesian benchmark as follows,

logit(bij,t+1) = δlogit(bij,t) + β1I(sj,t = p) ln
(

ˆLRi
t(p)

)
+ β0I(sj,t = n) ln

(
ˆLRi

t(n)
)
+ ϵj,t+1.

(12)

δ captures the weight placed on the log prior odds ratio. β0 and β1 capture responsiveness
to either negative or positive signals respectively. In the context of the experiment, sj,t = p

corresponds to a positive signal, while sj,t = n corresponds to a negative signal. Since I(sj,t =

n) + I(sj,t = p) = 1 there is no constant term. ϵj,t+1 captures non-systematic errors, noting the
use of j to identify the experimental subject.

Bayes’ rule is a special case of this empirical model when δ = β0 = β1 = 1, as well as γi
s = 1.

δ1,M will be used to describe the coefficient of δ for teammate 1 in the Main (M) treatment
(i.e. the individual themselves), δ2,M describes the coefficient of δ for teammate 2 in the Main
treatment. Similarly for control (C), with analogous definitions for β1 and β0.

What are the implications of self-serving attribution bias for this framework? First note that
ˆLR1

t (p) ≥ LR1
t (p) and ˆLR1

t (n) ≥ LR1
t (n). The intuition follows directly from the motivation

for manipulating the γi
s in the first place – to arrive at self-serving beliefs.21

20We note that there is an implicit upper bound on γ1
n as this equation is ≤ 1. The reason is that we must

assume that a negative signal is in fact perceived as negative information. If γ1
n were implausibly large, the

interpretation of this would be that biased individuals actually perceive negative signals as indicating a greater
likelihood of performing in the top half. Within the context of our deeper foundational model in Appendix A,
we interpret this as a restriction on the shape of the mental costs of distorting γ1

n.
21If any of these conditions were violated it would imply that signals are perceived as less indicative of being
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Bayesian posteriors result in a weight of β1 = 1 or β0 = 1 on LR1
t (p) or LR1

t (n) respectively.
For an individual suffering from attribution biases who perceives greater likelihood ratios, es-
timates of β1 will be biased upwards for teammate 1, while estimates of β0 will be biased
downwards.22 In other words, after either a positive or negative signal individuals will perceive
the signal to be more indicative of being in the top than it really is. For teammate 2, the
distortions could result in over-weighting or under-weighting of positive and negative signals.
In the hypothesis, we refer to these modes of distortions as positive bias and negative bias,
respectively. Since our theories of attribution bias do not alter predictions of δ, we remain
agnostic over these values, and instead focus on the parameters β0 and β1.

Lastly, since there is no ego-utility at stake in the Control treatment, we do not expect that
these individuals suffer from attribution biases that are driven by motives of ego-protection.
They might, however, make some general, unsystematic mistakes in belief updating. This leads
to the following competing hypotheses, comparing beliefs across the two treatments.23

Hypothesis 2:

Updating about one’s self and teammate is the same across Main and Control
treatments.
(β1,M

1 = β1,C
1 ; β1,M

0 = β1,C
0 and β2,M

1 = β2,C
1 ; β2,M

0 = β2,C
0 )

Hypothesis 2*:

Updating about one’s self is self-serving: individuals over-weight positive and under-
weight negative signals about teammate 1 in Main compared to Control.
(β1,M

1 > β1,C
1 ; β1,M

0 < β1,C
0 )

And updating about teammate is biased:
Positive bias: individuals over-weight positive and under-weight negative signals about team-
mate 2 in Main compared to Control.
(β2,M

1 > β2,C
1 ; β2,M

0 < β2,C
0 )

Or negative bias: individuals under-weight positive and over-weight negative signals about
teammate 2 in Main compared to Control.
(β2,M

1 < β2,C
1 ; β2,M

0 > β2,C
0 )

in the top than they really are. If this were the case then Bayesian updating would in fact give the individual
higher utility (see also Appendix A).

22That β1 is biased upwards is straightforward. Since ln( ˆLR1
t (p)) ≥ 0, a Bayesian response to in ˆLR1

t (p)
will manifest itself as an over-response to the smaller unbiased LR1

t (p). β0 is biased downwards because
ln( ˆLR1

t (n)) ≤ 0 so a Bayesian response to ˆLR1
t (n) will manifest itself as an under-response to the smaller (more

negative, i.e. larger in absolute value) LR1
t (n).

23In Hypothesis 2* we do not include the case of β2,M
1 = β2,C

1 , β2,M
0 = β2,C

0 , as with self-serving bias this only
arises as a knife-edge (measure zero) case. In an earlier version of this paper we focused on initial predictions
of self-serving mis-attributions at the expense of either the teammate or noise, but not both. These models are
presented in the Online Appendix Section 8. While they generate stark predictions, neither is able to explain
our results, in part due to their rigidity.
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5 Results

5.1 Initial Beliefs

Figure 2 presents the first round beliefs in Main and Control treatments for both teammates.
In the Main treatment, where individuals estimate beliefs about their own performance, the
average reported belief about being in the top half is 66.4%, significantly different from 50%
in a two-sided Wilcoxon signed rank test at the 1% level (p-value 0.0000).24 In the Control
treatment, where individuals estimate the performance of another, randomly selected individual
in the position of teammate 1, the average reported belief is 56.3%. Intriguingly, this is also
significantly different from 50% at the 1% level using a Wilcoxon signed rank test (p-value
0.0046). Similarly, the beliefs that teammate 2 scores in the top half are 53.4% and 54.3% in
the Main and Control treatment, respectively. These beliefs are also significantly different from
50% (Wilcoxon signed rank tests p-values 0.0012 and 0.0017 respectively).

Figure 2: Prior Beliefs by Treatment
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.5

.6
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.9

1

Main Control Main Control

Teammate 1                                                 Teammate 2 

For teammate 1: Main, Belief about own performance; Control, Belief about other teammate 1’s performance.
For teammate 2: Belief about other teammate 2’s performance. 95% Confidence intervals.

These results hence appear to present evidence for “overconfidence”, according to the test
of Benoît and Dubra (2011). However, as these beliefs do not involve estimation of one’s own
performance, we regard them as a general over-estimation that is not driven by differences
in Main or Control, or in teammate 1 or teammate 2 framing: a Kruskal–Wallis test does
not find a significant difference across performance beliefs about teammate 1 in Control and
teammate 2 in Main and Control (p-value 0.2654). Also, there are no significant differences in

24Note that we use two-sided tests throughout the paper. Non-parametric tests are used as we reject normality
in belief distributions, see Online Appendix Section 5.
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initial beliefs about teammate 2 between the Main and Control treatment (Wilcoxon rank-sum
p-value: 0.5723).

On the other hand, when we test Hypothesis 1 and compare initial beliefs about teammate 1
across the two treatments, Main (self) and Control (other), we can clearly reject equality of
beliefs (Wilcoxon rank-sum test p-value: 0.0005). The results are thus in line with Hypothesis
1*. This provides robust evidence that what we are observing in the Main treatment does
reflect true overconfidence. It further suggests that subjects find the IQ task ego-relevant.

Result 1: Subjects in the Main treatment hold overconfident initial beliefs about their perfor-
mance compared to the Control treatment. Initial beliefs about teammate 2 do not differ across
treatments.

Lastly, we also note that our hard-easy manipulation affects the initial beliefs. Individuals
rate themselves in the top half with 72% probability when the test was easy, and with 62%
when the test was hard (for more details, and a test of hard-easy effects on belief updating,
see Online Appendix Section 2). While not our main focus, we also find evidence that men
are more overconfident than women (further details, also concerning gender differences in belief
updating are provided in Online Appendix Section 3).

5.2 Belief Updating

To study self-serving attribution bias discussed in Section 3 and to test the hypotheses from
Section 4, we use Equation 12 in Section 4.2 for our primary empirical analysis. Later, in
Section 5.2.2 we investigate updating biases taking a non-parametric approach, free of structural
assumptions. This allows us to statistically distinguish posteriors in Main versus Control,
accounting for differences in initial priors, utilizing a matching strategy. Moreover, we discuss
individuals’ willingness to pay (WTP) to be matched to a new teammate 2 in Section 5.3.
For the interested reader we present an additional analysis of the resulting weights in Online
Appendix Section 4, and examine the average evolution of beliefs in Online Appendix Section 5.

5.2.1 Structural Framework

Table 2 presents the main specification for belief updating about teammate 1 for the Main
and Control treatments. Following previous literature on belief updating, we also include
comparisons of the weighting of positive relative to negative signals (i.e. whether updating is
asymmetric in the positive or negative direction). Our sample includes all updates from both
waves, in Part 2 and 3. Samples excluding Part 3 are presented in Online Appendix Section 6,
with similar results. We follow common sampling restrictions in the literature: excluding
boundary observations and wrong direction updates. With two-dimensional uncertainty, we
classify a wrong direction update as updating at least one belief in the wrong direction, without
compensating by adjusting the other belief in the correct direction. More details are provided
in Online Appendix Section 6.
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Table 2: Updating Beliefs about Teammate 1

(1) (2)
Regressor Main Treatment Control Treatment
δ 0.734∗∗∗ 0.751∗∗∗

(0.054) (0.045)
β1 0.573∗∗∗ 0.506∗∗∗

(0.071) (0.075)
β0 0.260∗∗∗ 0.507∗∗∗

(0.060) (0.061)
P-Value ( δ = 1 ) 0.0000 0.0000
P-Value ( β1 = 1 ) 0.0000 0.0000
P-Value ( β0 = 1 ) 0.0000 0.0000
P-Value ( β1 = β0 ) 0.0038 0.9906

R2 0.56 0.60
Observations 863 829
P-Value [Chow-test] for δ ( Regressions (1) and (2) ) 0.8089
P-Value [Chow-test] for β1 ( Regressions (1) and (2) ) 0.5152
P-Value [Chow-test] for β0 ( Regressions (1) and (2) ) 0.0040
P-Value [Chow-test] for (β1 − β0) ( Regressions (1) and (2) ) 0.0231

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant. δ is the coefficient on the log prior odds
ratio. β1 and β0 are coefficients on the log likelihood of observing positive and negative signals respectively.
Constant omitted because of collinearity. Bayesian updating corresponds to δ = β1 = β0 = 1. β1, β0 < 1
indicates conservative updating. β1 − β0 > 0 indicates positive asymmetric updating.

Updating is not Bayesian in either Main or Control. All coefficients in Table 2 are signif-
icantly different from the Bayesian prediction of 1, indicated by asterisks. Column 1 reveals
that positive signals are given significantly more weight than negative signals when updating is
about own performance (β1,M

1 > β1,M
0 , significant at the 1% level). No such asymmetry is ob-

served in column 2, in the Control treatment, for updating about another’s performance. Thus,
Hypothesis 2 is rejected, updating is not the same across the Main and Control treatments.25

Notably β1,M
1 > β1,C

1 and β1,M
0 < β1,C

0 . Subjects put a larger weight on positive signals and a
smaller weight on negative signals when updating about teammate 1 in Main than in Control.
The patterns appear consistent with the first part of Hypothesis 2*, concerning self-serving
attribution bias in own belief updates. However, we only find a significant difference in response
to negative, but not positive signals. Taken together, this results in β1,M

1 − β1,M
0 > β1,C

1 − β1,C
0 ,

i.e. a larger positive asymmetry in Main than in Control. We summarize our findings as follows:

Result 2: When updating beliefs about one’s self, subjects in the Main treatment display an
under-responsiveness to negative signals compared to subjects from the Control treatment who
update about other subjects.

25We note that δ is significantly less than 1, though not different across Main and Control treatments. This
is consistent with a large body of previous evidence, and indicative of base-rate neglect, see Benjamin (2019).
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Table 3: Updating Beliefs about Teammate 2

(1) (2)
Regressor Main Treatment Control Treatment
δ 0.770∗∗∗ 0.717∗∗∗

(0.048) (0.050)
β1 0.398∗∗∗ 0.491∗∗∗

(0.056) (0.070)
β0 0.248∗∗∗ 0.418∗∗∗

(0.043) (0.061)
P-Value ( δ = 1 ) 0.0000 0.0000
P-Value ( β1 = 1 ) 0.0000 0.0000
P-Value ( β0 = 1 ) 0.0000 0.0000
P-Value ( β1 = β0 ) 0.0358 0.3708

R2 0.47 0.45
Observations 1016 916
P-Value [Chow-test] for δ ( Regressions (1) and (2) ) 0.4408
P-Value [Chow-test] for β1 ( Regressions (1) and (2) ) 0.2977
P-Value [Chow-test] for β0 ( Regressions (1) and (2) ) 0.0235
P-Value [Chow-test] for (β1 − β0) ( Regressions (1) and (2) ) 0.4728

Analysis uses OLS regression. Difference is significant from 1 at * 0.1; ** 0.05; *** 0.01. Robust standard
errors clustered at individual level. R2 corrected for no-constant. δ is the coefficient on the log prior odds
ratio. β1 and β0 are coefficients on the log likelihood of observing positive and negative signals respectively.
Constant omitted because of collinearity. Bayesian updating corresponds to δ = β1 = β0 = 1. β1, β0 < 1
indicates conservative updating. β1 − β0 > 0 indicates positive asymmetric updating.

For a full picture of the self-serving patterns in attribution, we now examine updating about
teammate 2. In our model of attribution bias, individuals either over-respond to positive signals
and under-respond to negative signals or vice-versa, when updating about teammate 2 in Main
compared to Control.

To identify which of these patterns are visible, Table 3 presents belief regressions for team-
mate 2 in Main (column 1) and Control (column 2) that are analogous to the ones in Table 2
for teammate 1. Interestingly, patterns are very similar, though less pronounced. In particular,
β2,M
0 and β2,C

0 are significantly different at the 5% level – i.e. subjects under-weight nega-
tive feedback about their teammate when they are member of the team. Overall these results
present even more evidence inconsistent with the hypothesis of equivalent updating across the
Main and Control treatments (Hypothesis 2). More specifically, individuals appear to manipu-
late beliefs about their teammate to generate self-serving beliefs in a way that is largely in line
with Hypothesis 2*, for the case of positive bias.

Result 3: Just like for teammate 1, when updating beliefs about teammate 2, subjects in the
Main treatment display an under-responsiveness to negative signals compared to subjects from
the Control treatment.

As noted earlier in Section 3 and detailed in Appendix A, some positively biased updat-
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ing about teammate 2 can be optimal since it permits self-serving beliefs, while reducing the
material costs of such beliefs, due to more moderate weighting between the two teammates.
Interestingly, for positive signals, β1,M

1 in Table 2 column 1 is significantly greater than β2,M
1

in Table 3 column 1 (Chow test p-value 0.0062). For negative signals, the respective β1,M
0 and

β2,M
0 coefficients do not differ significantly (Chow test p-value 0.8637). Taken together, the

difference in asymmetry (β1,M
1 −β1,M

0 ) versus (β2,M
1 −β2,M

0 ) across the first columns in Tables 2
and 3 is significant at the 10% level (Chow test p-value 0.0963).26 Hence, while we find positive
asymmetry for both self and teammate 2, it is stronger when updating about one’s self.

There are a few candidate alternative explanations for the observation of positively biased
updating for both teammate 1 and teammate 2 in the Main treatment. We briefly discuss three
more prominent ones here and address them in more detail in Online Appendix Section 7: first,
that anchoring causes individuals to update similarly about teammate 2, second that positively
biased updating for teammates is driven by an in-group bias, and third that subjects selectively
discount or ignore negative signals. Briefly, we interpret the evidence as suggesting that these
three explanations cannot explain the patterns in our data. First: raw absolute and percentage
updates are not positively correlated across teammate 1 and 2 in our Main treatment, second:
initial prior beliefs for teammate 2 are not statistically different across Main and Control, and
third: positive asymmetry for one’s self is statistically significantly stronger than for one’s
teammate and subjects in our Main treatment selectively ignore negative signals at equivalent
rates to those in the Control treatment. Finally, we note that although we interpret our
evidence as inconsistent with these explanations, the first two potential explanations could be
incorporated into our underlying model, a point we return to in the concluding discussion.

5.2.2 Matching on Priors

After having shown that beliefs are updated differently in the Main versus Control treatments
in a quasi-Bayesian framework, in this subsection we examine the extent to which updating
differs across treatments without any reliance on the Bayesian benchmark. Specifically, we
present a non-parametric analysis of updated beliefs, which utilizes a matching strategy that
conditions the Main and Control subjects on their prior beliefs in round 1, and then compares
their posteriors at the end of Part 2 after four rounds of feedback.27 By matching on initial
prior beliefs we are able to step away from the reliance on Bayes’ rule, and instead ask the
following question: given the same prior, do subjects arrive at different posteriors about their
own abilities (Main treatment) versus the abilities of a randomly chosen teammate (Control
treatment)? Beyond this, to ensure that these matched subjects face the same number of
positive and negative signals, we force exact matching on the total number of negative signals
received over the four rounds of feedback. Matching on both priors and the proportion of
negative signals received summarizes all of the information that individuals have about the

26Moreover, this difference in the difference in asymmetry is also statistically significantly different from the
difference in the difference in asymmetry in the Control treatment (Chow test p-value 0.0795).

27Since we are working with final posteriors, Part 3 is not comparable as it was not included in wave 1, and
additionally involves some re-matching of teammates, invalidating these posteriors for this purpose.
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teammates’ abilities.28

Table 4 presents the results of this exercise reporting average treatment effects (ATE).
The matching strategy reveals that individuals who are updating about their own performance
(Main treatment) end up with posteriors that are 6.5 to 8.5 percentage points greater than those
updating about the performance of a randomly chosen teammate 1, conditional on having the
same priors and facing the same proportion of positive and negative signals. This provides
strong evidence that information processing differs across the two treatments.

Table 4: Main vs Control: Belief Teammate 1 Top

(1) (2)
1 Neighbor 2 Neighbors

ATE 0.085∗∗∗ 0.065∗∗

(0.032) (0.029)

Observations 372 372

Analysis uses nearest neighbor matching, with replacement when > 1 neighbor. Significantly different from
zero at * 0.1; ** 0.05; *** 0.01. Abadie-Imbens Robust Standard Errors in parentheses. All matches received
the exact same proportion of negative signals.

Table 5: Main vs Control: Belief Teammate 1 Top by Proportion of Negative Signals Received

(1) (2) (3) (4) (5)
0/4 − 1/4 − 2/4 − 3/4 − 4/4 −

ATE −0.015 0.104 0.139∗∗∗ −0.025 0.185∗∗

(0.067) (0.082) (0.046) (0.087) (0.084)

Observations 73 68 99 60 72

Analysis uses nearest neighbor matching with 1 neighbor. Significantly different from zero at * 0.1; ** 0.05;
*** 0.01. Abadie-Imbens Robust Standard Errors in parentheses. Each column restricts sample to specific
proportion of negative signals received (out of 4 total signals).

Our structural analysis suggests this difference in updating is driven primarily by under-
responsiveness to negative signals. To investigate this in our non-parametric framework, Table 5
presents matching estimates for each of the possible distributions of observed signals separately.
Consistent with the structural framework, receiving 4 negative signals (0 positive) turns out
to reveal the greatest difference between Main versus Control: subjects with the same initial
priors end up an estimated 18.5 percentage points more confident when they are estimating
their own performance. The only other significant effect is found for a balanced distribution of
2 positive and 2 negative signals.

28Priors of matched neighbors must be within 3 percentage points, i.e. a caliper of 0.03. The results are
consistent for other calipers (available upon request).
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Regarding the non-parametric estimates of the effect of differential updating about team-
mate 2 when one is a member of the team (Main treatment) versus not (Control), analogous
regressions are presented in Tables 6 and 7. The estimates suggests that posterior beliefs about
one’s teammate are between 4.7 and 5.2 percentage points greater in Main relative to Control,
however this is not statistically significant at conventional levels (respective p-values: 0.1294
and 0.1624). Examining the ATE estimates separately for different distributions of negative
signals received, receiving all negative signals is associated with a large and significant effect.
Individuals with the same priors about teammate 2 in Main and Control who receive only neg-
ative signals end up with posteriors about teammate 2 that are approximately 14 percentage
points greater in Main relative to Control. Again, this supports our structural results.

Result 4: In line with the findings from the structural framework, individuals who update about
their own performance (Main treatment) end up with posteriors that are 6.5 to 8.5 percentage
points greater than those who update about the performance of a randomly chosen teammate 1
(Control treatment). The bias is strongest for those who receive negative signals in all four
feedback rounds. The treatment differences for updating about teammate 2 go into the same
direction, but are smaller in magnitude and not statistically significant at conventional levels.

Table 6: Main vs Control: Belief Teammate 2 Top

(1) (2)
1 Neighbor 2 Neighbors

ATE 0.052 0.047
(0.037) (0.033)

Observations 374 374

Analysis uses nearest neighbor matching, with replacement when > 1 neighbor. Significantly different from
zero at * 0.1; ** 0.05; *** 0.01. Abadie-Imbens Robust Standard Errors in parentheses. All matches received
the exact same proportion of negative signals.

Table 7: Main vs Control: Belief Teammate 2 Top by Proportion of Negative Signals Received

(1) (2) (3) (4) (5)
0/4 − 1/4 − 2/4 − 3/4 − 4/4 −

ATE −0.014 0.077 0.032 −0.009 0.139∗∗

(0.098) (0.095) (0.070) (0.096) (0.063)

Observations 69 74 92 52 87

Analysis uses nearest neighbor matching with 1 neighbor. Significantly different from zero at * 0.1; ** 0.05;
*** 0.01. Abadie-Imbens Robust Standard Errors in parentheses. Each column restricts sample to specific
proportion of negative signals received (out of 4 total signals).
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5.3 Willingness to Change Teammates

The result that self-serving motives lead to distorted interpretations of feedback regarding a
teammate enables a new understanding on the persistence of overconfident beliefs. Beyond
this, these resulting perceptions of one’s teammate could influence future decision making. We
now examine whether theses biases lead to further consequences in our experiment.

To do so, we provided our subjects with a surprise opportunity to change teammates. In
wave 2 we measured the subjects’ willingness to replace teammate 2 with a new (randomly
selected) teammate, by submitting a willingness to pay (WTP) between 0 and 5e. Here our
main interest is the extensive margin, i.e. the binary decision of whether a subject is willing
to change teammates. While we also study the intensive margin in Appendix C, that analysis
is confounded by the fact that the value of switching teammates depends also on beliefs about
own performance.

Given the patterns of biased updating we observe in our Main treatment, subjects end
up with more positive performance beliefs about teammate 2. This lowers the proportion of
subjects in Main who should be willing to pay to switch teammates, as Appendix C confirms
given actual subject beliefs after four rounds of feedback. We also confirm this outcome in our
WTP data. Figure 3 presents the proportion of subjects who submit a WTP strictly greater
than zero, by Main and Control treatments. 31% of Main subjects and 47% of Control subjects
were willing to pay to change teammates, a difference significant at the 5% level (Fisher’s exact
p-value 0.0207).

Result 5: As a result of biased updating about teammate 2, subjects in the Main treatment are
34% less likely to want to change teammates than their Control counterparts.

Note that this does not simply result from subject’s more overconfident initial beliefs in the
Main compared to the Control treatment. Before feedback, the proportion of those willing to
switch teammates should be the same in both treatments. The reason is that before feedback,
the decision to change teammates depends only on the belief about teammate 2’s performance.
Result 5 thus confirms that the biased updating patterns we observed translate into actual
differences in future decision making. Moreover, it suggests that subjects are sufficiently confi-
dent about their reported beliefs that they act on them in a context which falls outside of the
purview of the elicitation procedure.

In our further investigation of the intensive margin in Appendix C, we find that among
those submitting a positive WTP, this WTP is smaller in the Main than Control treatment,
though it is not significant at conventional levels (Wilcoxon rank-sum p-value 0.1321, N =

89). This finding is consistent with the model, as higher performance beliefs lead to a lower
value of switching teammates, since the weight allows subjects to hedge against having a lower
performing teammate.
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Figure 3: Willingness to switch
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Proportion of subjects who submitted strictly positive WTP to change teammate 2. Wave 2 only (N = 231).
95% confidence intervals shown.

6 Discussion
We believe that our model and empirical results present a novel way to navigate the different
approaches to studying self-serving attribution bias across the literature of psychology and more
recently economics. Our analysis offers a significant re-framing of the psychology literature –
how much we credit or blame external factors shapes our beliefs about them, and consequently
can alter our decisions. This subtle but powerful point means that if self-serving attributions
are part-strategic (rather than naively triggered to defend our ego), economic payoffs (rather
than purely psychological principles) can dictate the type of attribution to external factors.
This could explain some of the mixed evidence on the strength and direction of attributions
(Miller and Ross, 1975; Zuckerman, 1979).

Within economics, much of the literature has focused on the relatively narrow view of bi-
ased information processing as a one-dimensional phenomenon: self-serving attribution at the
expense of “other factors” – which in empirical studies meant exclusively other idiosyncratic
factors. Yet our model highlighted the one-dimensional setting as a specific nested case, where
the formation of self-serving beliefs are most constrained. Broadening this focus, our exper-
imental results suggest that when the information individuals receive depends on additional
dimensions of uncertainty, they also end up distorting these dimensions to suit their desire to
hold self-serving beliefs.

The result of these distortions in our experiment were that subjects ended up positively
biased about their teammate’s performance, which lowered the short term material costs, but
reduced willingness to change teammates. As joining a different team provides a new, indepen-
dent source of information, these short term distortions can slow down the learning process,
providing a potential explanation for the persistence of overconfidence. Importantly, this con-
trasts with the results of Hestermann and Le Yaouanq (2020), who showed that with Bayesian
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updating, underconfidence, not overconfidence should persist in the long run.29

Yet we should not always expect positive bias, as the direction of the bias is context de-
pendent, and varies based on both the material consequences as well as on the potentially
varied cognitive costs of distortion. When should we expect positive versus negative attribu-
tions to other dimensions of uncertainty? Our theoretical framework emphasizes these critical
interactions between additional dimensions of uncertainty and material and cognitive costs of
distorted information processing. Our experiment focused on a particular team environment
with a weighting decision, which enabled a type of material hedging of overconfidence, through
positive attributions about one’s teammate. However, more generally our framework provides
a way forward for analyzing other contexts. Different contexts with alternative material cost
structures would be expected to alter optimally biased attributions in different ways. Beyond
this, the shape of cognitive costs of distortion across different dimensions will also play a key
role in how attributions occur.

In our underlying model, we assumed that these costs of distortion were identical and
independent across the two dimensions of uncertainty, which we believe is a natural starting
point. Yet, could it be easier to distort beliefs about ourselves than others (or vice-versa)?
Relatedly, there may also be differences in our ability to distort our perceptions of human versus
artificially (computer) generated uncertainty. The end of Section 5.2.1 mentioned potential
alternative explanations for our empirical findings. While we did not find in-group bias likely
to explain our results, such a bias could manifest itself as further cognitive costs of negative
distortions towards an in-group target.

Beyond this, one could consider a world where the costs of distortion across different sources
of uncertainty are not independent. For example, does distortion in one dimension make distor-
tion in another dimension more costly? Another potential alternative explanation we ruled out
empirically was a simple form of anchoring, which might materialize as similar absolute or rel-
ative belief updating across the two teammates. However, there might be more complex forms
of anchoring in information processing across multiple dimensions, which could be modeled as
a cognitive cost of distorting these sources in opposing directions.

More broadly, our results present a way forward for thinking about how individuals select
into or leave certain environments, to nurture their preferred worldview. Do people choose
to work with others in anticipation of how they will rationalize good or bad outcomes? Do
they choose environments in which the material costs of overconfidence are lower, or in which
outcomes may be more easily attributed among various sources? These questions are critical
for future research.

Apart from team settings, environments with multi-dimensional uncertainty are ubiquitous:
a student receives a grade which may depend on the professor’s teaching ability, or a trader
realizes a return based on her portfolio and the underlying state of the economy. In the end, if
self-serving belief formation motivates strategic behavior in how we choose our environments,

29In our experiment the opportunity to change teammates came as a surprise to subjects. To the extent that
such opportunities can sometimes be predictable in the real world, we might expect this would limit the welfare
consequences. We thank an anonymous referee for bringing this point to our attention.
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and how we process information within those environments, we should not be surprised to find
that for many individuals overconfidence could persist over the long run.
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Appendix

A Model of Optimal Information Distortion
In this section we provide a micro-foundation for self-serving attribution biases. Specifically we
follow Brunnermeier and Parker (2005) by assuming that individuals engage in a subconscious
optimization problem which selects the optimal belief distortion parameter γi

s ∈ R+ at the
moment the individual processes new information, trading off the benefits from overconfidence
against the costs. While updating beliefs over time is a dynamic problem, we assume a static
model of updating. We do this to avoid the additional complexity involved in a dynamic
model of optimally biased updating, but also, our focus here is on the short-run. Unlike
Brunnermeier and Parker (2005) we relax the assumption of Bayesian updating, and assume
that this optimization occurs directly over the updating process, through parameters γi

s rather
than beliefs b1t+1. The updating process is precisely that outlined in Equations 7 and 8.

We introduce the possibility that individuals receive direct utility over the belief that they
are in the top half, through a linear function α · b1t+1.30 α ∈ [0,∞) indicates the extent to which
the individual benefits from holding overconfident beliefs. This can be thought of as a reduced
form interpretation of the benefits to overconfidence, for example direct hedonic utility benefits,
signalling to others, or benefits from motivation. Importantly, we assume that individuals do
not derive any benefit from beliefs about others’ ability, nor do they derive direct benefit from
beliefs about the four states TT , TB, BT , BB. Of course, since b1t+1 = bTT

t+1 + bTB
t+1, indirectly

they can benefit from these beliefs.
We follow the literature and assume that a subconscious process trades off these benefits

from overconfidence against the costs, which we posit to be material costs from inefficient deci-
sion making as well as mental costs of distorting the updating process. In the experiment, these
material costs are the lower expected probability of earning P = e10. Following Bracha and
Brown (2012), we assume a mental cost function J(γi

s, 1) that is convex and strictly increasing
in |γi

s − 1|, i.e. is minimized at the Bayesian information processing parameter γi
s = 1.31 We

will further assume that the mental costs of distorting γ1
s and γ2

s are separable.
In the following we denote b̂1t+1 as potentially biased beliefs, with b1t+1 referring to the

posteriors that would arise following Bayes rule.32 We first note that if subjects hold biased
beliefs, they will submit a distorted weight in the experiment, ω̂∗

t+1, which generates material
costs from foregone expected income. Critically, the optimal weight depends on beliefs about
two states, b̂TB

t+1 and b̂BT
t+1. Given the form of the bias for updating about own ability, this will

30We choose this for simplicity, though our results would hold for both concave belief value functions, as well
convex belief value functions – as long as the mental cost function was sufficiently convex to dissuade extreme
beliefs.

31Following Bracha and Brown (2012) we further assume that limγi
s→{∞} J

′(γi
s, 1) → ∞. Intuitively, ab-

sent monetary incentives the model would always predict extreme overconfidence, which seems implausible.
Justifications for such a cost function are discussed in Bracha and Brown (2012). Finally, experimental evi-
dence suggests that such mental costs are necessary if one wishes to take models of belief distortion seriously
(Engelmann et al., 2019; Coutts, 2019b).

32In the main text we take subjective beliefs as given, and so do not follow this notation for simplicity.
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imply an over-weighting of the likelihood of state TB by γ1
s , and an over- or under-weighting

of the likelihood of state BT by γ2
s .

Under this formulation we present again the resulting biased posterior beliefs for teammate 1
and 2, as shown in Equations 7 and 8. We show the case for a positive signal, noting that the
results are unchanged by replacing ΦA1A2 by the negative signal equivalent 1− ΦA1A2 .

[
b̂1t+1|st = p

]
=

γ1
pγ

2
pΦTT b

TT
t + γ1

pΦTBb
TB
t

γ1
pγ

2
pΦTT bTT

t + γ1
pΦTBbTB

t + γ2
pΦBT bBT

t + ΦBBbBB
t[

b̂2t+1|st = p
]
=

γ1
pγ

2
pΦTT b

TT
t + γ2

pΦBT b
BT
t

γ1
pγ

2
pΦTT bTT

t + γ1
pΦTBbTB

t + γ2
pΦBT bBT

t + ΦBBbBB
t

.

Evidently, own beliefs should be strictly increasing in γ1
p for interior beliefs. To see this

is the case, define x1 = γ1
pγ

2
pΦTT b

TT
t + γ1

pΦTBb
TB
t and x2 = γ2

pΦBT b
BT
t + ΦBBb

BB
t . Then[

b̂1t+1|st = p
]
= 1

1+
x2
x1

. Taking the derivative with respect to γ1
p :

∂
[
b̂1t+1|st = p

]
∂γ1

p

=
1(

1 + x2

x1

)2 · x2

x2
1

·
(
γ2
pΦTT b

TT
t + ΦTBb

TB
t

)
> 0.

Taking the second derivative, and letting x̄1 = γ2
pΦTT b

TT
t + ΦTBb

TB
t :

∂2
[
b̂1t+1|st = p

]
∂2γ1

p

=
2(

1 + x2

x1

)3 ·
(
x2

x2
1

)2

· (x̄1)
2 − 2(

1 + x2

x1

)2 · x2

x3
1

· (x̄1)
2

=
2x2 (x̄1)

2(
1 + x2

x1

)3

· x4
1

·
(
x2 − x1 ·

(
1 +

x2

x1

))
< 0.

Thus own beliefs are increasing and concave in γ1
p (and γ1

n, as the above are true for arbitrary
ΦA1A2). We next examine how own beliefs are affected by γ2

s . In our context they should be
decreasing in γ2

s .
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Taking the derivative with respect to γ2
p :

∂
[
b̂1t+1|st = p

]
∂γ2

p

=
1(

1 + x2

x1

)2 · x2

x2
1

·
(
γ1
pΦTT b

TT
t

)
− 1(

1 + x2

x1

)2 · 1

x1

·
(
ΦBT b

BT
t

)
=

1

x2
1

(
1 + x2

x1

)2 ·
(
x2 · γ1

pΦTT b
TT
t − x1 · ΦBT b

BT
t

)
=

1

x2
1

(
1 + x2

x1

)2 · ((γ2
pΦBT bBT

t +ΦBBbBB
t )·γ1

pΦTT bTT
t −(γ1

pγ
2
pΦTT bTT

t +γ1
pΦTBbTB

t )·ΦBT bBT
t )

=
γ1
p

x2
1

(
1 + x2

x1

)2 ·
(
ΦTT b

TT
t · ΦBBb

BB
t − ΦTBb

TB
t · ΦBT b

BT
t

)
< 0

Given our specification of the signal structure ΦA1A2 , Θ = ΦTT b
TT
t · ΦBBb

BB
t − ΦTBb

TB
t ·

ΦBT b
BT
t < 0, as detailed in Section B. Hence ∂

[
b̂1t+1|st=p

]
∂γ2

p
< 0, and similarly for γ2

n.
Regarding the second derivative, it is positive, recalling that Θ < 0:

∂2
[
b̂1t+1|st = p

]
∂2γ2

p

=
2γ1

p ·Θ

x2
1

(
1 + x2

x1

)3 ·
(
x2

x2
1

·
(
γ1
pΦTT b

TT
t

)
− 1

x1

·
(
ΦBT b

BT
t

))
−

2γ1
p ·Θ

x3
1

(
1 + x2

x1

)2 · γ1
pΦTT b

TT
t

=
2(γ1

p)
2 ·Θ

x4
1

(
1 + x2

x1

)3 · (Θ)−
2γ1

p ·Θ

x3
1

(
1 + x2

x1

)2 · γ1
pΦTT b

TT
t > 0.

Thus own beliefs are a decreasing and convex function of γ1
p (and γ1

n, noting that ΦTT =

1 − ΦBB and ΦTB = ΦBT ). Finally we note that by symmetry, all of these results apply
analogously to beliefs about teammate 2 performance, b̂2t+1. That is, they are increasing in γ2

s

and decreasing in γ1
s .

Given the impact of the distortion parameters γi
s on own beliefs, we can turn to the impact

of these parameters on other elements of the decision problem. The resulting (biased) optimal
weight is ω̂∗

t+1. From Equation 4, setting ΦBT = ΦTB = 0.5, we have33

ω̂∗
t+1 =

1

1 +
(

γ2
s b

BT
t

γ1
s b

TB
t

)2 (13)

33We note that, given the biased updating process, this is simplified from the following equation (analogously

for a negative signal): b̂BT
t+1

b̂TB
t+1

=

γ2
pΦBT bBT

t

γ1
pγ2

pΦTT bTT
t +γ1

pΦTBbTB
t +γ2

pΦBT bBT
t +ΦBBbBB

t

γ1
pΦTBbTB

t

γ1
pγ2

pΦTT bTT
t +γ1

pΦTBbTB
t +γ2

pΦBT bBT
t +ΦBBbBB

t

=
γ2
pΦBT bBT

t

γ1
pΦTBbTB

t
.
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This leads to the following optimization problem, taking into account the mental cost functions:

max
{γs}

{
α · b̂1t+1 + bTT

t+1 · u(P ) + bTB
t+1 ·

√
ω̂∗
t+1 · u(P ) + bTB

t+1 · (1−
√

ω̂∗
t+1) · u(0) (14)

+ bBT
t+1 ·

√
1− ω̂∗

t+1 · u(P ) + bBT
t+1 · (1−

√
1− ω̂∗

t+1) · u(0) + bBB
t+1 · u(0)

− J(γ1
s , 1)− J(γ2

s , 1)

}
There are three important forces at work here. The first term involves the belief utility benefits
from increasing γ1

s and decreasing γ2
s . The middle terms present the financial payoffs, which

are maximized when γ1
s = γ2

s , resulting in an unbiased weight. The final two terms are mental
costs, which are minimized when γi

s = 1, i.e. updating is Bayesian.
By the properties of the mental cost function J(γi

s, 1), extreme values of γi
s are never optimal,

and thus we restrict our attention to an interior solution. We also will restrict our focus to
solutions with γ1

s ≥ 1, without loss of generality to the paper’s predictions.34 Substituting
biased beliefs and weights into the maximization, and substituting the values of Φ from the
experiment, the first order condition with respect to γ1

s is (where u(P )− u(0) = ∆u):

α ·
∂
[
b̂1t+1|st

]
∂γ1

s

+
γ2
s ·

(
bTB
t+1 · bBT

t+1

)2 ·∆u((
γ2
sb

BT
t+1

)2
+
(
γ1
sb

TB
t+1

)2) 3
2

· (γ2
s − γ1

s )− J ′(γ1
s , 1) (15)

The first order condition with respect to γ2
s is:

α ·
∂
[
b̂1t+1|st

]
∂γ2

s

+
γ1
s ·

(
bTB
t+1 · bBT

t+1

)2 ·∆u((
γ2
sb

BT
t+1

)2
+
(
γ1
sb

TB
t+1

)2) 3
2

· (γ1
s − γ2

s )− J ′(γ2
s , 1) (16)

Result 1: When α = 0 there will be no belief distortion.
This result derives directly from setting the two FOCs equal to zero. When α = 0 the

unique optimal solution is to set γ1
s = γ2

s = 1.

Result 2: γ1
s ≥ γ2

s .
This result derives from the second FOC. By contradiction, if γ1

s < γ2
s , the equation setting

the FOC equal to zero cannot be satisfied.

If α = 0, the optimal γ1
s = γ2

s = 1. When α > 0, γ1
s > 1, while the optimal γ2

s may be less
than, equal to, or greater than 1, though γs

2 < γs
1. The reason why γ2

s is not unambiguously
smaller than one is that there is a benefit to updating in a biased way about teammate 2,
which counter-balances the biased updating about teammate 1, leading to a closer to optimal

34Note that self-serving beliefs can arise from setting γ1
s > 1 or γ2

s < 1. Regarding the latter case, while
unlikely in our setting, it does not preclude that γ1

s < 1. As the distortions of both parameters must lead
to upwardly biased posteriors about own performance to be optimal, all of the results in the main paper are
unaffected. In our context it is also sufficient to include a condition such as γ2

s ≥ γ1
s

2 , or γ2
s ≥ 1

2 to rule out
γ1
s < 1.
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weighting decision.
When α = 0 updating is Bayesian for both teammates. When α > 0 the resulting biased

updating leads to inflated posteriors about own performance, while posteriors about the team-
mate’s performance may be inflated or deflated. A sufficient condition for posteriors about

the teammate’s performance to be lower than Bayesian is γ2
s < 1, since ∂

[
b̂2t+1|st=s

]
∂γ2

s
> 0 and

∂
[
b̂2t+1|st=s

]
∂γ1

s
< 0. By continuity, for any γ1

s > 1, there exists 1 < γ2
s < γ1

s such that posteriors
are greater than Bayesian, since posteriors are lower than Bayesian for γ2

s = 1 and greater than
Bayesian for γ2

s = γ1
s .

B Deriving the condition for Θ < 0

B.1 Theoretical Result

In this section we show that starting from any non-degenerate prior beliefs and assuming that
individuals update according to our model of self-serving attribution bias,

Θ = ΦTT b
TT
t · ΦBBb

BB
t − ΦTBb

TB
t · ΦBT b

BT
t

= (1− ΦTT )b
TT
t · (1− ΦBB)b

BB
t − (1− ΦTB)b

TB
t · (1− ΦBT )b

BT
t < 0.

In particular, we show that this condition will hold whenever ΦTT ·ΦBB −ΦTB ·ΦBT < 0. This
is satisfied in our experiment as 0.9 · 0.1− 0.5 · 0.5 = −0.16 < 0.

Denote prior beliefs by b10, b
2
0. In the first round the performances of both teammates are

independent, hence bTT
0 = b10 · b20, bTB

0 = b10 · (1− b20), and so on.
The expression of interest in the first round is thus:

ΦTT (b
1
0 · b20) · ΦBB((1− b10) · (1− b20))− ΦTB(b

1
0 · (1− b20)) · ΦBT ((1− b10) · b20)

= (b10 · b20)((1− b10) · (1− b20)) · [ΦTT · ΦBB − ΦTB · ΦBT ] (17)

Thus, this expression will be negative, whenever ΦTT · ΦBB − ΦTB · ΦBT < 0.
We now consider the next round of updating, after a positive signal is received. We show

the case for state TT , but the derivation is analogous for the other three states.

[bTT
1 |st = p] =

γ1
pγ

2
pΦTT · bTT

0

γ1
pγ

2
pΦTT · bTT

0 + γ1
pΦTB · bTB

0 + γ2
pΦBT · bBT

0 + ΦBB · bBB
0

We note that the denominator of beliefs for all four states will be identical. Denote it by
D1 = γ1

pγ
2
pΦTT ·bTT

0 +γ1
pΦTB ·bTB

0 +γ2
pΦBT ·bBT

0 +ΦBB ·bBB
0 . We now substitute these expressions

for the four states back into the initial expression of interest, Equation 17:

1

D1

(
Φ2

TTγ
1
pγ

2
pb

TT
0 Φ2

BBb
BB
0 − Φ2

TBγ
1
pb

TB
0 · Φ2

BTγ
2
pb

BT
0

)
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We now note that this is simply an iteration of Equation 17. As such it reduces to:

=
γ1
pγ

2
p

D1

(
(b10 · b20)((1− b10) · (1− b20)) · [(ΦTT · ΦBB)

2 − (ΦTB · ΦBT )
2]

)
< 0

We continue this inductive process once more:

[bTT
2 |st = p] =

γ1
pγ

2
pΦTT · bTT

1

γ1
pγ

2
pΦTT · bTT

1 + γ1
pΦTB · bTB

1 + γ2
pΦBT · bBT

1 + ΦBB · bBB
1

Where we denote D2 = γ1
pγ

2
pΦTT · bTT

1 +γ1
pΦTB · bTB

1 +γ2
pΦBT · bBT

1 +ΦBB · bBB
1 and so hence:

[bTT
2 |st = p] =

γ1
pγ

2
pΦTT · γ1

pγ
2
pΦTT

D1
bTT
0

D2

=

(
γ1
pγ

2
pΦTT

)2 · bTT
0

D1 · D2

Thus we arrive at the third term:

=
(γ1

pγ
2
p)

2

D2 · D1

(
(b10 · b20)((1− b10) · (1− b20)) · [(ΦTT · ΦBB)

3 − (ΦTB · ΦBT )
3]

)
< 0

Following this process, assume the kth posterior is given by:

[bTT
k |st = p] =

(
γ1
pγ

2
pΦTT

)k · bTT
0

D1 · · · Dk

Then the k + 1th posterior:

[bTT
k+1|st = p] =

γ1
pγ

2
pΦTT · bTT

k

γ1
pγ

2
pΦTT · bTT

k + γ1
pΦTB · bTB

k + γ2
pΦBT · bBT

k + ΦBB · bBB
k

In particular, the k + 1th term of this inductive process is:

=
(γ1

pγ
2
p)

k

D1 · · · Dk+1

(
(b10 · b20)((1− b10) · (1− b20)) · [(ΦTT · ΦBB)

k+1 − (ΦTB · ΦBT )
k+1]

)
< 0

We note that given ΦTT · ΦBB = 0.09 and ΦTB · ΦBT = 0.25, this expression is strictly
negative for all positive integers k.
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B.2 Empirical Result

Without making any assumptions on the updating process, we can also simply examine the
value of the expression: ΦTT b

TT
t · ΦBBb

BB
t − ΦTBb

TB
t · ΦBT b

BT
t , given actual beliefs in the

experiment, and check whether it is less than or equal to 0. In fact in only 2% of cases is this
expression positive.

C WTP to Switch Teammates
In wave 2 we provided subjects with the opportunity to be randomly re-matched to a new
teammate 2, using the BDM mechanism. Subjects i could bid xi ∈ e[0, 5], where e5 is the
risk-neutral maximum value of switching.35 After submitting their bid, the computer randomly
generated a price, p ∈ [0, 1] using a continuous distribution. Whenever xi > p they would pay
the price p out of their earnings, and be matched with a new teammate. If xi ≤ p they would
not pay anything, and stay matched with the same teammate.

Given the reported beliefs of subjects we are able to calculate whether it would be optimal
for them to switch teammates, assuming risk neutrality. Before receiving feedback, this decision
depends entirely on the belief about teammate 2. If subjects believe their teammate is in the
top half with probability less than 50% they should pay to switch, otherwise they should not
be willing to pay any positive amount.36

Since initial beliefs about teammate 2 are not statistically different across Main and Control
treatments, we would predict that the number of subjects willing to pay a positive amount to
switch teammates will be the same across both groups. Figure C.1 confirms this is the case
given prior beliefs in Main and Control (Round 1). This figure plots the theoretically optimal
proportion of subjects which should opt to switch teammates.

While initial prior beliefs are such that there are no differences across Main and Control
treatments, beliefs after four rounds of feedback (Round 5) are such that in fact a higher
proportion of individuals in Control should be willing to switch teammates. This is because
in Control, subjects update in a symmetric way about their teammate, and end up with more
moderate beliefs.37 In Main, because of the positive bias in updating about the teammate,
there is no corresponding increase in the proportion that should switch teammates. As was
shown in Figure 3, this is indeed the case for actual subject decisions.

35Note that the worst outcome for subjects is when both teammates are in the bottom half, where they will
earn e0 with certainty. If one is in the top half, they can select ω accordingly to ensure a high probability of
earning e10. Since there is a 50% probability a randomly selected person is in the top half, the expected value
of being matched with them is e5.

36One exception is if they believe with probability 1 that they themselves are in the top half, since they can
choose a weight of ω = 1 and mitigate any effect of a bad teammate. Note also that the price one is willing to
pay is decreasing in beliefs about own performance. Higher performers are better able to hedge using their own
performance, through choosing the optimal weight.

37In fact, since beliefs are initially slightly inflated about teammate 2, they end up with more pessimistic (but
accurate) beliefs in Control.
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Figure C.1: (Calculated) Optimal Proportion Willing to Switch
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Given subject beliefs, this shows the proportion of subjects that would (hypothetically) gain from switching
teammates. 95% confidence intervals shown.

Figure C.2 presents the actual values of WTP submitted. The average WTP in Main is
e0.39, while in Control it is e0.74, significantly different at the 1% level (Wilcoxon rank-sum
p-value 0.006). Restricting the sample only to positive WTP, the Wilcoxon rank-sum p-value is
0.132, N = 89. Thus while there is lower WTP among this restricted sample in Main treatment
relative to Control, this can be accounted for by the more overconfident beliefs in Main, for
which there is less material benefit to having a new teammate.
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Figure C.2: Willingness to pay
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WTP (in Euro) of subjects to switch teammate 2. Left side includes all data, right side includes only positive
values of WTP. Wave 2 only. 95% confidence intervals shown.
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